Skin - 30 Minutes

were transparent, wetter, more absorbent, and thinner (texture); however, there were perceivable differences between the Floramac 10+3 and Phenyl Trimethicone. Initially, Phenyl Trimethicone was visually more glossy, more transparent, wetter, more absorbent, and thinner (texture); however, there were few perceivable differences between the Floramac 10+3 and Phenyl Trimethicone 30 minutes post-application to the skin.

ABSTRACT

Objective - The objective of these studies was to demonstrate Floramac 10 (NCI: Ethyl Macadamia) as a natural silicone alternative for skin and hair care products. Methods - In a series of double-blind, randomized, IRB-approved clinical studies, consumers (n=27) evaluated Floramac 10 versus Cyclopentasiloxane and Dimethicone of various viscosities for the following product and skin-feel characteristics: gloss, texture, absorbency, spreadability, wetness, moisturization, stickiness, stickiness/smoothness, and slipperiness. The same ingredients were also evaluated using bioinstrumentation for skin radiance (i.e. gloss) and hydration (i.e. dryness). Additionally, Floramac 10 was evaluated versus Cyclopentasiloxane and Phenyl Trimethicone for the following hair care characteristics: comb force, breakage, shine, heat protection and consumer preference. Results - Floramac 10 provided a similar skin-feel to that of the siloxanes as perceived by consumers, and increased skin radiance and moisturization when used in bioinstrumentation. Floramac 10 also decreased wet / dry comb force and breakage, and increased shine and consumer perception of hair better than silicones. Conclusion - Floramac 10 is a viable natural silicone alternative.
A Natural Silicone Alternative: Floramac® 10

Presented by: Tiffany N. Oliphant, M.S. and Robert A. Harper, Ph.D.

For the Society of Cosmetic Chemists Technology Showcase

December 11-12, 2017
New York, NY